the plots of k_0 vs. [H⁺] were found to be $(3.1 \pm 0.3) \times 10^{-4}$, $(8.0 \pm 0.6) \times 10^{-4}$, $(19 \pm 1.1) \times 10^{-4}$, and $(26 \pm 1) \times 10^{-4}$ s^{-1} at 25, 35, 45, and 50°, respectively.

It appears that the nucleophilic attack of OH of the water on phosphorus of the peroxydiphosphate is much easier, as suggested by Franchuk and Brodskii,¹¹ than the nucleophilic attack²¹ of bromide on the oxygen of the peroxydiphosphate; hence the reaction prefers the hydrolytic path rather than a direct redox reaction. The attack by OH on P would be facilitated by the less negative charge on the peroxydiphosphate ion resulting in catalysis by the hydrogen ion. The reaction, therefore, is faster with species $H_3P_2O_8^-$. The mechanism is similar to that of phosphate esters and related compounds.²²

A comparison of the results of the present investigation with those of the oxidation of iodide7 shows little similarity between the two. The latter involves a rate law of three terms, of which one refers to hydrolytic reaction and the other two refer to direct reactions of iodide with $H_3P_2O_8^-$ and $H_2P_2O_8^{2-}$. The difference in character probably lies in the difference of the polarizability of the iodide and bromide ions, and thus iodide serves as a better nucleophile²³ for attack on oxygen of the peroxydiphosphate.

Formation of phosphate ion radical PO4-2- has been reported in the oxidation of Fe^{II} complexes^{7,24,25} and in the photolytic oxidation²⁶ of water, but no such evidence was found in the present investigation or in the oxidations of arsenic(III)² and antimony(III)³ (absence of any effect of acrylamide on the rate). There is no evidence also in the hydrolytic studies and hence this is another support for the mechanism of the redox reaction suggested earlier.

A comparison of peroxydisulfate and peroxydiphosphate reactions may be of some interest. The decomposition of peroxydiphosphate²⁷ is slower than that of peroxydisulfate²⁸ and both of them involve free-radical ions.^{28,29} All redox reactions studied so far involving peroxydiphosphate are faster. Peroxydisulfate requires the use of silver(I) as catalyst for the oxidations of manganese(II)^{30,31} and vanadyl ions,³² whereas peroxydiphosphate does so readily even without catalyst. Peroxydiphosphate hydrolyzes more readily than peroxydisulfate.³⁴ Catalysis by silver(I) and probably by copper(II), also, appears to be a common feature of both anions.

Registry No. H₃P₂O₈⁻, 58904-54-4; Br⁻, 24959-67-9.

References and Notes

- (1) I. I. Creaser and J. O. Edwards, Top. Phosphorus Chem., 7, 379 (1972).
- S. Kapoor and Y. K. Gupta, J. Chem. Soc., Dalton Trans., in press. S. Kapoor and Y. K. Gupta, unpublished work. (2)
- (3)
- (4) M. Anderson, J. O. Edwards, A. A. Green, and M. D. Wiswell, Inorg. Chim. Acta, 3, 655 (1969).
- (5) J. O. Edwards, Coord. Chem. Rev., 8, 87 (1972).
 (6) E. Chaffee, I. I. Creaser, and J. O. Edwards, Inorg. Nucl. Chem. Lett., 7, 1 (1971).
- A. Indelli and P. L. Bonora, J. Am. Chem. Soc., 88, 924 (1966).
 I. M. Kolthoff and R. Belcher, "Volumetric Analysis", Vol. III, Inwerscience, New York, N.Y., 1957, p 44.
 S. Kapoor, P. D. Sharma, and Y. K. Gupta, Talanta, 22, 765 (1975).
- (10) P. R. Carter and N. Davidson, J. Phys. Chem., 56, 877 (1952).
- (11) I. F. Franchuk and A. I. Brodskii, Dokl. Akad. Nauk SSSR, 118, 128 (1958).
- (12) M. M. Crutchfield, "Peroxydiphosphoric Acid in Peroxide Reaction Mechanism", J. O. Edwards, Ed., Interscience, New York, N.Y., 1961,
- (13) S. H. Goh, R. B. Heslop, and J. W. Lethbridge, J. Chem. Soc. A, 1302 (1966).
- I. M. Kolthoff, Z. Anal. Chem., 60, 400 (1921). (14)
- (15) Reference 1, p 389.
- (16) Reference 12, p 59 (17) D. N. Sharma and Y. K. Gupta, J. Phys. Chem., 75, 2516 (1971), and
- (17) D. H. Fortnum, C. J. Battaglia, S. R. Cohen, and J. O. Edwards, J. Am. Chem. Soc., 82, 778 (1960); C. J. Battaglia, Ph.D. Thesis, Brown University, 1960.
- (19) M. M. Crutchfield and J. O. Edwards, J. Am. Chem. Soc., 82, 3533 (1960).
- (20) M. Venturini, A. Indelli, and G. Raspi, J. Electroanal. Chem. Interfacial (21) J. O. Edwards, "Peroxide Reaction Mechanism", Interscience, New York,
 (21) J. O. Edwards, "Peroxide Reaction Mechanism", Interscience, New York,
- N.Y., 1961, p 67.
 (22) C. J. Battaglia and J. O. Edwards, *Inorg. Chem.*, 4, 552 (1965).
 (23) J. O. Edwards, *J. Am. Chem. Soc.*, 76, 1540 (1954).

- (24) A. A. Green, J. O. Edwards, and P. Jones, Inorg. Chem., 5, 1858 (1966).
- (25) R. Farina, R. Hogg, and R. G. Wilkins, *Inorg. Chem.*, 7, 170 (1968).
 (26) R. J. Lussier, W. M. Risen, Jr., and J. O. Edwards, *J. Phys. Chem.*, 74,
- 4039 (1970).
 - G. Bida, R. Curci, and J. O. Edwards, Int. J. Chem. Kinet., 5, 859 (1973). (27)
- I. M. Kolthoff and I. K. Miller, J. Am. Chem. Soc., 73, 3055 (1951).
 M. Tsao and W. K. Wilmarth, J. Phys. Chem., 63, 346 (1959).
 Y. K. Gupta and S. Ghosh, J. Inorg. Nucl. Chem., 9, 178 (1959).
 A. O. Dekker, H. A. Levy, and D. M. Yost, J. Am. Chem. Soc., 59, 2129 (1937)
- D. M. Yost and W. H. Claussen, J. Am. Chem. Soc., 53, 3349 (1931). (32)
- L. M. Bharadwaj, D. N. Sharma, and Y. K. Gupta, unpublished work; E. Chaffee and J. O. Edwards, unpublished work. (33)
- (34) Y. K. Gupta, J. Indian Chem. Soc., 37, 755 (1960).
- Contribution from the Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90007

Inorganic Chemistry of Fluorocarbenes. 1. Reactions of Tetrafluoroethylidene with **Fluorine-Containing Phosphines**

KENNETH G. SHARP* and IRVING SCHWAGER

Received December 4, 1975

The interactions of tetrafluoroethylidene with three fluorine-containing phosphines have been investigated. The source of the carbene is the pyrolytic decomposition of C₂F₅SiF₃ at 200 °C. The reaction of CF₃CF with PF₃ generates CF₂==CFPF₄ and PF₅; reaction with $(CF_3)_3P$ leads to $(CF_3)_2PCF(CF_3)_2$; and reaction with $(CF_3)_2PCF(CF_3)_2$ produces the fluorocarbon $(CF_3)_2CFCF(CF_3)_2$. The possibility that the vinylphosphorane product of the PF₃ reaction results from fluorine-transfer rearrangement of $C_2F_5PF_2$ as an intermediate product was discredited by a demonstration that $C_2F_5PF_2$ is thermally stable under the reaction conditions. Other mechanistic pathways are discussed.

Introduction

The direct interaction of fluorocarbenes and volatile inorganic fluorides would seem to be a potentially valuable source of fluoroalkyl derivatives of the main-group elements. To date, however, such a synthetic approach has been severely impeded because of the remarkably low reactivity of CF2-the most widely investigated fluorocarbene.¹ No reaction occurs between CF_2 and NF_3 , PF_3 , or BF_3 .² One of the few inorganic fluorides known to react with CF₂ is PF₅; Mahler² has shown that several perfluoro(methylphosphoranes) are interconverted via reversible elision of CF₂

 $(CF_3)_x PF_{5-x} \rightleftharpoons CF_2 + (CF_3)_{x-1} PF_{6-x}$ (x = 1-3)

AIC50873W

Table I.	. Infrare	d Spectra	l Data fo	or New
Fluorop	ohosphoru	is Compo	ound s ^a	

* *			
$(CF_3)_2 PCF(CF_3)_2$	CF ₃ CF ₂ PF ₂	$(CF_2 = CF)POF_2$	
1285 s	1745 vw, br	1745 s	
1255 sh	1725 vw, br	1388 s	
1245 s	1322 s	1348 m	
1172 s	1225 vs	1217 s	
1145 s	1167 s	1170 w	
1102 m	1130 s	1025 (?) w	
1085 sh	1087 m, sh	945 s	
963 w	100 9 m	888 s	
950 w	978 m	685 w	
930 m	864 vs	545 s	
7 50 m	754 m, sh		
712 m	749 m		
618 vw	746 m		
555 vw	630 m		
535 w	627 m		
480 vw	623 m, sh		
448 m	590 vw, br		
413 w	540 vw, br		
	487 m		
	433 w		
	410 w		
	404 w		
	376 w		
	370 w		

^a Spectra run in the vapor phase in 8-cm path length cell equipped with KBr windows. Values in cm⁻¹. Relative intensities: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; br, broad, sh, shoulder.

The development of the chemistry of the perfluoro(alkylsilanes)^{3,4} has provided—through pyrolytic routes—access to fluorocarbenes of substantially enhanced reactivity vis-a-vis CF_2 . This paper will describe the reactions of tetrafluoroethylidene [fluoro(trifluoromethyl)carbene] with PF_3 , $(CF_3)_3P$, and the new compound $(CF_3)_2PCF(CF_3)_2$.

Experimental Section

Apparatus and Techniques. Volatile substances were manipulated in a greaseless vacuum system employing borosilicate glass and PTFE stopcocks. The fluorinating agent SbF_3 was handled in a recirculating inert-atmosphere glovebox.

Infrared spectra were recorded in the range $4000-250 \text{ cm}^{-1}$ with a double-beam grating spectrophotometer (Beckman Model 20A). Gases were contained in glass cells fitted with KBr windows which were sealed with Viton A O-rings. Fluorine NMR spectra were run on a Varian T-60 and/or a Varian XL-100. Phosphorus spectra were obtained on a Varian XL-100, in the Fourier transform mode.

Gas chromatographic analyses of mixtures and purifications were carried out on a Varian Aerograph Model 920. The column found most useful was 10 ft, 1/4 in., stainless steel packed with 7% OV-101 on 60/80, acid-washed, dimethyldichlorosilane-treated Chromosorb G, operated at room temperature. Gas samples were introduced by use of gastight syringes from glass bulbs equipped with septums.

Mass spectra were obtained on a magnetic single-focusing instrument (Hitachi Model RMU-6E) at 70 eV.

Reagents and Starting Materials. Commercially available reagents were used as received subsequent to purity verification by infrared analysis. The fluorinating agent SbF_3 was outgassed at high vacuum overnight prior to use.

The preparation of $C_2F_5SiF_3$ was carried out as previously described.⁴ Pure samples of $(CF_3)_3P$, $(CF_3)_2PI$, and PF_3 were kindly provided by Professor A. B. Burg. Additional quantities of $(CF_3)_3P$ and $(CF_3)_2PI$ were synthesized from the reaction of CF_3I with red phosphorus and iodine at 200-220 °C for 48-64 h.⁵

Synthesis of C₂F₅**P**F₂. A 12.8-mmol amount of C₂F₅I, 44 mmol of red phosphorus, and 5 mmol of I₂ were heated in a sealed glass ampule at 220 °C for 70 h. The product mixture was pumped through a series of cold traps maintained at -24, -84, and -196 °C. C₂F₅PI₂, the desired intermediate product, was retained in the -24 °C bath. Fluorination of C₂F₅PI₂ (which was not itself characterized) was effected by heating a stirred mixture of the phosphine and excess SbF₃ at 58 °C overnight. Fractionation of the fluorination of pure C₂F₅PI₂

Table II. ¹⁹F and ³¹P NMR Spectral Parameters for CF₃CF₂PF₂

	δα	
-28.7	PF_2	106.4
83.4	CF_{2}	139.4
Coupling	Constants ^b	
1259.3	CF_2PF_2	9.0
101.0	$CF_3CF_5PF_5$	6.4
7.4	$CF_{3}CF_{2}$	2.0
	-28.7 83.4 Coupling 1259.3 101.0 7.4	$\begin{array}{cccc} & & & & & & \\ & -28.7 & PF_2 \\ & 83.4 & CF_2 \\ & Coupling \ Constants^b \\ 1259.3 & CF_2 PF_2 \\ 101.0 & CF_3 CF_2 PF_2 \\ & 7.4 & CF_3 CF_2 \end{array}$

^{*a* ³¹} P shift in ppm from external (CH₃O)₃P (positive shifts are to high field); ¹⁹F shifts in ppm upfield from external CFCl₃. ^{*b*} Absolute values in Hz. Where coupling is observable in both ¹⁹F and ³¹P spectra an average of the two observed values has been given.

Table III. Mass Spectral Data for $C_2F_5PF_2$ (70 eV)

m/e	e Intens ^a	Peak identity	m/e	Intens ^a	Peak identity
188	3 w	C ₂ F ₅ PF ₂	69	Major pk	CF ₃ , F ₂ P
119) m	C_2F_4 , CF_4P	62	m	C, Ĕ, , ČFP
100) s	C_2F_4 , CF_3P	50	S	CF ₂ , FP
88	3 w	CF₄, F₄P	43	m	C ₂ F, CP
81	. s	$C_2 \dot{F}_3, \dot{C} F_2 P$	31	s	CF, P

^a Key: w, weak (<12% of major peak (pk)); m, medium (12-50% of major peak); s, strong (>50% of major peak).

Table IV. NMR Spectral Parameters for $(CF_3)_2 PCF(CF_3)_2$

	δα		
Р	129.1	$(CF_3)_2 PCF(CF_3)_2$	75.0
$(CF_3)_2 PCF(CF_3)_2$	49.2	$(CF_{2})_{2}PCF(CF_{2})_{2}$	187.2
•••••	7	b	
/ · -	JP-F		
$(CF_3)_2$ -P	88.8	$(CF_3)_2 CFP$	56.0
(CF ₃) ₂ CF-P	15.8		
	In .	b	
(CE) = P - CE(CE)	6 1	$\mathbf{P} - \mathbf{C} \mathbf{F} (\mathbf{C} \mathbf{F})$	10.1
$(CF_3)_2 = \Gamma - C\Gamma (CF_3)_2$	0.1	$1 - CF(CF_3)_2$	10.1
$(Cr_3)_2 r - Cr(Cr_3)_2$	0.7		

 a^{31} P shift in ppm upfield from external (CH₃O)₃P; 19 F shifts in ppm upfield from external CFCl₃. ^b Absolute values in Hz.

(characterization discussed below) in the -196 °C trap. The estimated overall yield of $C_2F_5PF_2$ based on C_2F_5I consumed is 11%.

Alternate Synthesis of $(CF_3)_2PCF(CF_3)_2$. A 2.0-mmol amount of $(CF_3)_2CFI$ and 2.1 mmol of $(CF_3)_2PI$ were added to a 50-ml flask containing 3.0 ml of diglyme which had been distilled from sodium, and 110 mg of a 30% by weight (4.6 mmol of Li) dispersion of Li metal in mineral oil. The system was stirred and maintained at -45 °C for 4 h; then it was kept overnight at room temperature, after which the products were distilled through traps at -78, -95, and -196 °C. The material held at -95 °C, 0.2 mmol, was analyzed by gas chromatography (GC) and found to consist of a mixture of [(C-F₃)₂CF]₂ (12.1%), [(CF₃)₂P]₂ (31.8%) (these compounds were identified via comparison of their infrared spectra and/or GC retention times with those of authentic compounds), and a compound (56.3%) which exhibits an infrared spectrum and GC retention time identical with those attributed to (CF₃)₂PCF(CF₃)₂ resulting from the carbene reaction.

Product Characterizations. In general, compounds were purified by means of trap-to-trap fractionation, low-temperature column distillation, and/or gas-liquid chromatography. The phosphorane CF_2 =CFPF4 was identified via comparison with literature infrared and ¹⁹F NMR spectra.⁶ The compound (CF₃)₂CFCF(CF₃)₂ was characterized by comparison with the literature infrared spectrum⁷ and by independent preparation of a compound with identical infrared spectrum and GC retention time from the 2537-Å Hg-sensitized photolysis of (CF₃)₂CFL. Details of characterization of the new compounds in this work follow.

 $C_2F_5PF_2$. Characterization of $C_2F_5PF_2$ was based on ¹⁹F and ³¹P NMR spectra (all resonances are totally consistent with first-order interactions) (see Table II), its mass spectrum (Table III), its infrared spectrum (Table I), and vapor density molecular weight (calcd 188.0; found 189.0).

 $(CF_3)_2PCF(CF_3)_2$. The identity of this product was established by the following methods: vapor density molecular weight (calcd 338.0;

Figure 1. ¹⁹F NMR spectra of $(CF_3)_2 PCF(CF_3)_2$. The upper spectrum is experimental; the lower spectrum is a computer-based simulation obtained using the parameters given in Table IV. Despite the nominal appearance of the spectrum as alternating quartets and quintets, it is in fact a doublet of septets of septets.

Table V. Mass Spectral Data for $(CF_3)_2PCF(CF_3)_2$ (70 eV)

Table VI. ¹⁹F NMR Spectral Parameters for F₂C=CFPOF₂

m/e	In- tens ^a	Peak identity	m/e	In- tens ^a	Peak identity
338	w	$(CF_3)_2 PCF(CF_3)_2$	112	m	C ₂ F ₃ P
319	w	$C_4F_{12}P$	107	w	F₄P
269	w	C ₁ F ₁₀ P	100	S	CF_3P, C_2F_4
250	w	Ċ ₃ F _a P	93	m	$C_2 F_2 P, C_3 F_3$
231	w	C ₃ F ₈ P	81	m	CF_2P, C_2F_3
181	w	C ₃ F ₆ P	74	m	C ₂ FP
169	w	C_2F_6P, C_3F_7	69	Major	$F_{2}P, CF_{3}$
162	w	C ₃ F ₅ P		pk	
150	w	C_2F_5P, C_3F_6	62	m	CFP, C_2F_2
143	m	C ₃ F₄P	50	m	FP, CF_2
131	m	C_2F_4P, C_3F_5	43	w	C₂F, CP
119	m	$C\tilde{F}_4\dot{P}, C_2\dot{F}_5$	31	s	CF, P

^a Key: w, weak (<12% of major peak (pk)); m, medium (12-50% of major peak); s, strong (>50% of major peak).

found 342.0); alkaline hydrolysis (5% aqueous NaOH at 24 °C for 2 h) to give a 2:1 mixture of $CF_3H-(CF_3)_2CFH$ in 96% yield; infrared (Table I), fluorine and phosphorus NMR (Table IV), and mass spectral data (Table V). The NMR spectra of the phosphorus atom and of the unique fluorine in the heptafluoroisopropyl group are complex (although first order) 98-line multiplets; consequently, computer-based simulations were employed to verify assignments of coupling constants. Experimental and computed spectra for these two nuclei are presented in Figures 1 ($CF(CF_3)_2$) and 2 (P).

An additional means of characterization of this compound involved its independent synthesis, as described above.

CF₂=**CFPOF₂**. Characterization was afforded from analysis of its (first-order) ¹⁹F NMR spectrum (Table VI), an infrared spectrum containing a characteristic P=O stretch at 1388 cm⁻¹ and C=C stretch at 1745 cm⁻¹ (Table I), observation of a molecular ion in the mass spectrum of a mixture also containing CF₂=CFPF₄, and its

$(1)F F(3) C=C PF_{2}(4) O$						
	δα		Coupling const ^b		Coupling const ^b	
F_{1} F_{2} F_{3} F_{4}	71.6 92.9 199.8 65.2	F_1F_2 F_1F_3 F_1F_4 F_1P F_2F_3	16.1 29.5 11.9 <i>c</i> 121.3	$F_{2}F_{4}$ $F_{2}P$ $F_{3}F_{4}$ $F_{3}P$ $F_{4}P$	4.2 20.1 8.1 <1 1090	

^a In ppm upfield from internal CFCl₃. ^b Absolute values in Hz. All F-F couplings were consistent to within ± 0.2 Hz between both resonances. ^c Coupling not determined due to partial obscuration of the F₁ resonance by impurity peaks.

hydrolytic formation from CF₂==CFPF₄.

Reaction Chemistry

Reaction of CF₃CF with PF₃. Pyrolysis of a mixture of $C_2F_5SiF_3$ (0.52 mmol) and PF₃ (2.18 mmol) was carried out at 200 °C and ca. 0.5 atm for 1 h. A small amount of nonvolatile colorless film was observed on the walls of the sealed glass reaction tube after the reaction was completed. Volatile products were passed through a series of traps cooled to -95, -120, and -196 °C. The material held in the -120 °C trap (0.25 mmol) was found to be a mixture of CF₂=CFPF₄ and CF₂=CFPOF₂ in a 16:1 ratio. A small amount of material (0.016 g) was retained in the -95 °C trap. This fraction appeared to be a mixture of CF₂=CFPF₄, CF₂=CFPOF₂, and at least one other substance. The mixture could not be successfully chromatographed, and the identity of the unknown compound(s) could not be ascertained

Figure 2. ${}^{31}P$ NMR spectra of $(CF_3)_2PCF(CF_3)_2$. The upper spectrum is experimental; the lower is a computer simulation based on the parameters given in Table IV.

from infrared, NMR, or mass spectral analysis of the mixture. The material retained in the -196 °C bath (2.30 mmol) was analyzed by infrared and ¹⁹F NMR (vapor phase) spectra and found to be a mixture of PF₃ (1.64 mmol), SiF₄ (0.52 mmol), PF₅ (0.12 mmol), and POF₃ (0.04 mmol).

In a control experiment CF_2 =CFPF₄ (0.25 mmol) was heated at 200 °C and ca. 0.6 atm for 2 h. The recovered products (0.23 mmol) consisted of 91 mol % of unreacted CF_2 =CFPF₄ and 9 mol % of a mixture of SiF₄, PF₅, POF₃, and CF_2 =CFPOF₂.

Reaction of CF₃CF with P(CF₃)₃. In a typical experiment, a mixture of C₂F₅SiF₃ (1.32 mmol) and P(CF₃)₃ (1.36 mmol) was heated at 200 °C and ca. 0.5 atm for 1 h. Products were passed through a series of traps cooled to -78, -95, -120, and -196 °C. The material held in the -78 °C trap (0.56 mmol) was shown by gas chromatography to consist of two major components in a 10:1 ratio; several other species with longer retention times were present in much smaller amounts. The two chief components were purified by preparative-scale GC and their identities established as (CF₃)₂P- $CF(CF_3)_2$ and $[(CF_3)_2CF]_2$, respectively. The material held in the -95 °C trap (0.11 mmol) was shown by GC to consist of a 1.5:1 mixture of $(CF_3)_2PCF(CF_3)_2$ and $[(CF_3)_2CF]_2$. The contents of the -120 °C trap were demonstrated by infrared analysis to consist of a 3.8:1 mixture of unreacted P(CF₃)₃ and cis- and trans-perfluorobutene-2, respectively. The material retained in the -196 °C bath (1.78 mmol) consisted a mixture of SiF₄, cis- and trans-C₄F₈-2, $P(CF_3)_3$, and $CF_3CF=CF_2$, in the ratio of 16:2.0:1.7:1. The above data correspond to the following yields (based on $C_2F_5SiF_3$ consumed): (CF₃)₂PCF(CF₃)₂, 44%; [(CF₃)₂CF]₂, 14%; C₃F₆, 7%. In a control experiment, pure P(CF₃)₃ was heated at 200 °C for 1 h and underwent no detectable decomposition.

Reaction of CF₃CF with (CF₃)₂PCF(CF₃)₂. Pyrolysis of a 1:1 mixture (0.06 mmol each) of $C_2F_5SiF_3$ and $(CF_3)_2PCF(CF_3)_2$ was carried out at 200 °C and 420 Torr for 1 h. Products were passed through a series of traps cooled to -95, -130, and -196 °C. The material held in the -95 °C trap (0.04 mmol) was shown by GC to be a mixture of (CF₃)₂PCF(CF₃)₂ and [(CF₃)₂CF]₂ in the ratio of 2.6:1. The material which stopped in the -130 °C trap (0.02 mmol) was examined by infrared spectroscopy and shown to be a mixture of *cis*- and *trans*-perfluorobutene-2 and a fluoroalkylphosphine—very likely (CF₃)₃P—in the approximate ratio of 7:1. The substance in the -196 °C trap (0.06 mmol) proved to be essentially pure SiF₄. (CF₃)₂PCF(CF₃)₂ was independently determined to be thermally

stable under the reaction conditions.

Attempted Pyrolysis of $C_2F_5PF_2$. As a test for the possible intermediacy of $C_2F_5PF_2$ in the CF_3CF-PF_3 reaction, the compound was heated to 200 °C for a period of 1 h. Infrared analysis indicated no perceptible change in composition of the material after heating.

Formation of CF_2 — $CFPOF_2$. Routine handling of CF_2 — $CFPF_4$ invariably generated small amounts of CF_2 — $CFPOF_2$, apparently via reaction with glass in the presence of trace amounts of moisture. Indeed, the literature infrared spectrum⁶ of CF_2 — $CFPF_4$ contains several bands which we attribute to CF_2 — $CFPOF_2$. Deliberate exposure of CF_2 — $CFPF_4$ to small amounts of air or attempts to chromatograph the compound also led to formation of CF_2 — $CFPOF_2$ (the conversion is complete in the GC column). The concomitant formation of SiF_4 in samples that were exposed to air in glass vessels strongly suggests hydrolytic decomposition; decomposition in the GC column may occur via interaction of the phosphorane with siloxane moieties in the silicone stationary phase.⁸

Results

A general pathway for thermal decomposition of polyhalo(alkylsilanes) involves α transfer of halogen from carbon to silicon, with release of a carbene.⁹ The recent synthesis^{3,4} of perfluoro compounds of carbon and silicon has provided a convenient source for the generation of perfluorocarbenes. Substitution of a trifluoromethyl group for fluorine in the disappointingly unreactive CF₂ leads to a substantial increase in reactivity (and presumably electrophilicity) of the resultant carbene; for example, CF₃CF reacts virtually quantitatively with trimethylsilane (via Si-H bond insertion), while reaction of CF₂ with Me₃SiH could not be detected.⁴ The present work describes the reactions of CF₃CF—generated from the thermal decomposition of C₂F₅SiF₃ at 200 °C—with PF₃, (CF₃)₃P, and (CF₃)₂PCF(CF₃)₂.

Reaction of CF₃**CF with PF**₃. The reaction proceeds to generate CF₂—CFPF₄ as the major product (ca. 54%), along with a smaller quantity of PF₅ and a much smaller amount of a lower volatility substance(s) which was not successfully characterized. The vinylphosphorane product has been synthesized by Cowley and Taylor⁶ from the oxidative fluorination of CF₂—CFPCl₂ with SbF₅. The high efficiency

Inorganic Chemistry of Fluorocarbenes

of the CF₃CF-PF₃ reaction is indicated by the complete suppression of the formation of cis- and trans-perfluorobutene-2, the products of carbene dimerization in the absence of interacting species. Subjection of pure CF2-CFPF4 to the reaction conditions (200 °C for 1 h) results in only slight decomposition of the compound; its thermal degradation cannot account for the amount of PF5 formed in the reaction.

Reaction of CF₃CF with (CF₃)₃P. Except for a small amount of hexafluoropropene, the volatile products of this reaction are the new compound (CF₃)₂PCF(CF₃)₂ and perfluoro(2,3-dimethylbutane), $[(CF_3)_2CF]_2$. The latter two species are present in a ratio of ca. 3:1, respectively. A substantial portion of the carbene does not react with the $(CF_3)_3P$ and is recovered as *cis*- and *trans*-C₄F₈-2.

Reaction of CF_3CF with $(CF_3)_2PCF(CF_3)_2$. To explore possible sources of [(CF₃)₂CF]₂ in the CF₃CF-(CF₃)₃P reaction, we examined the interaction of the carbene and the primary product of the reaction, (CF₃)₂PCF(CF₃)₂. The latter does indeed react with CF3CF to generate perfluoro(2,3-dimethylbutane) and a smaller amount of (CF₃)₃P. No evidence for the formation of $CF_3P[CF(CF_3)_2]_2$ was obtained. The compound $(CF_3)_2PCF(CF_3)_2$ itself is thermally stable under the reaction conditions.

Discussion

The reactions of the carbene CF₃CF with the phosphines PF₃, $(CF_3)_3P$, and $(CF_3)_2PCF(CF_3)_2$ all follow different courses: the PF₃ reaction generates phosphoranes as major products; the $(CF_3)_3P$ reaction leads to what is formally the product of P-C bond insertion by the carbene; and the reaction with $(CF_3)_2PCF(CF_3)_2$ does not proceed with incorporation of the carbene into a new phosphine but produces the fluorocarbon formally corresponding to dimerization of the perfluoroisopropyl radical, [(CF₃)₂CF]₂.

Previous carbene-phosphine reactions do not allow a secure prediction of behavior in the present systems. Dihalocarbene additions to trialkyl-10 and triarylphosphines11-19 to give ylides have been reported, but these were not vapor-phase reactions, and the intermediacy of the free carbene in at least some of the reactions is questionable. $^{10-12}$ If the ylide²⁰ structure is viewed as a donor-acceptor complex between a phosphine and an electrophilic carbene, it is not clear that such complex formation is possible for the very weakly basic fluoro- or fluoroalkylphosphines (it should be recognized, however, that the π -acceptor abilities²¹ of these phosphines may well be influential in these systems).

In the CF₃CF-PF₃ reaction, two mechanistic routes to CF_2 =CFPF₄ seemed plausible. The first is ylide formation followed by β -fluorine transfer to phosphorus

$$CF_{3}CF + PF_{3} \rightarrow CF_{3}CF = PF_{3} \leftrightarrow CF_{3}CFPF_{3}$$

 $CF_3CF=PF_3 \rightarrow CF_2=CFPF_4$

Alternatively, if ylide formation were disfavored, carbene insertion into a P-F bond followed by transfer of two fluorines would account for the product

$$CF_3CF + PF_3 \rightarrow CF_3CF_2PF_2 \rightarrow CF_2 = CFPF_4$$

Although the latter transformation seemed unlikely to us, we undertook the synthesis and examination of the thermal stability of $C_2F_5PF_2$. The compound proved to be resistant to thermal decomposition under the conditions of the carbene reaction (200 °C for 1 h); we therefore suggest the intermediacy of the ylide in this reaction.

The source of the second major product in the CF₃CF-PF₃ reaction, PF5, is not known. Thermal degradation of pure CF2=CFPF4 under the reaction conditions does produce a small amount of PF5 but not enough to account for the abundance of the latter as a reaction product. It seems at least plausible that PF₅ is generated via the decomposition of a high-energy species formed from the exothermic trapping of the carbene by PF₃.

The reaction of CF₃CF with (CF₃)₃P formally involves P-C bond insertion by the carbene. However, initial ylide formation followed by the shift of a trifluoromethyl group would of course also account for the observed product. Such a rearrangement would presumably be related to SNi reactions such as the Stevens rearrangement; the P-C bond in perfluoroalkylphosphines is readily cleaved by strong base.²² If the reaction does proceed through the ylide intermediate, the CF₃ shift must be considerably faster than the β -fluorine transfer invoked for the PF₃ reaction; neither $(CF_3)_3PF(CF=CF_2)$ nor evidence for the presence of CF_2 (a likely decomposition product of the preceding molecule) was observed in this system.

The reaction of CF_3CF and $(CF_3)_2PCF(CF_3)_2$ is apparently the source of the fluorocarbon product $(CF_3)_2CFCF(CF_3)_2$ in the $(CF_3)_3P$ reaction. A possible explanation of this reaction is that the disubstituted product $CF_3P[CF(CF_3)_2]_2$ is sufficiently sterically encumbered to undergo homolytic cleavage of the P-C bond in the perfluoroisopropyl groups at 200 °C. Another possibility would be elision of the fluorocarbon product from a single molecule. We have at present no direct evidence in support of either of these mechanisms. The phosphorus "sink" in this reaction is apparently a compound (or polymer) of too low a volatility to be readily transferred in the vacuum system.

Acknowledgment. The authors are grateful to the National Science Foundation (Grant No. GP-42995) for support of this research and to Dr. Rolf Johannesen for assistance with the computer simulations of NMR spectra.

Registry No. (CF₃)₂PCF(CF₃)₂, 58734-88-6; CF₃CF₂PF₂, 58734-89-7; (CF₂=CF)POF₂, 58734-90-0; P, 7723-14-0; C₂F₅I, 354-64-3; (CF₃)₂CFI, 677-69-0; (CF₃)₂PI, 359-64-8; CF₃CF, 58734-91-1; PF₃, 7783-55-3; P(CF₃)₃, 432-04-2; C₂F₅SiF₃, 354-89-2.

References and Notes

- (1) For a recent review of the chemistry of fluorocarbenes, see D. Seyferth in "Carbenes", Vol. II, R. A. Moss and M. Jones, Jr., Ed., Wiley, New W. Mahler, Inorg. Chem., 2, 230 (1963).
 K. G. Sharp and T. D. Coyle, J. Fluorine Chem., 1, 249 (1971).
 K. G. Sharp and T. D. Coyle, Inorg. Chem., 11, 1259 (1972).
- (3)
- (4)
- (5) F. W. Bennett, H. J. Emeleus, and R. N. Haszeldine, J. Chem. Soc., 1568 (1953).
- A. H. Cowley and M. W. Taylor, J. Am. Chem. Soc., 91, 1934 (1969). R. D. Chambers, W. K. R. Musgrove, and J. Savory, J. Chem. Soc., (7)1993 (1962).
- E. W. Kifer and C. H. Van Dyke, Inorg. Chem., 11, 404 (1972).
- ζθΊ R. N. Haszeldine, New Pathways Inorg. Chem., Chapter 5 (1968).
- (10) R. L. Jones and C. W. Rees, J. Chem. Soc. C, 2249 (1969).
- F. W. Fowler, Chem. Commun., 1359 (1969) (11)
- (12) R. E. Alexander, A. B. Herrick, and T. M. Roder, J. Am. Chem. Soc., 72, 2760 (1950)
- (13) R. Nicoletti and M. L. Forcellese, Gazz. Chim. Ital., 95, 83 (1965).
- (14)J. Ratusky and F. Sorm, Collect. Czech. Chem. Commun., 23, 467 (1958).
- (15)R. W. Jackson and R. H. Manske, Can. J. Res. Sect. B, 13, 170 (1935). H. J. Callot and A. W. Johnson, Chem. Commun., 749 (1969). (16)
- G. Ciamician and M. Dennstedt, Ber. Dtsch. Chem. Ges., 14, 1153 (1881); (17)15, 1172 (1882).
- H. L. Rice and T. E. Londergan, J. Am. Chem. Soc., 77, 4678 (1955).
 F. S. Baker, R. E. Busby, M. Iqbal, J. Parrick, and C. J. G. Shaw, Chem.
- Ind. (London), 1344 (1969).
- (20) The term "ylide" is used generically to describe a hypothetical intermediate formed by interaction of the phosphine and carbene. It is not necessarily intended to suggest a dipolar zwitterionic structure as opposed to an "ylene structure wherein a double bond exists between carbon and phosphorus.
- A. B. Burg, Acc. Chem. Res., 2, 353 (1969).
 F. W. Bennet, H. J. Emeleus, and R. N. Haszeldine, J. Chem. Soc., 3896 (22)(1954).